Dynkin’s Isomorphism Theorem and the Stochastic Heat Equation

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Another Look into the Wong–zakai Theorem for Stochastic Heat Equation

Consider the heat equation driven by a smooth, Gaussian random potential: ∂tuε = 1 2 ∆uε + uε(ξε − cε), t > 0, x ∈ R, where ξε converges to a spacetime white noise, and cε is a diverging constant chosen properly. For any n > 1, we prove that uε converges in Ln to the solution of the stochastic heat equation. Our proof is probabilistic, hence provides another perspective of the general result of...

متن کامل

The First-Order Isomorphism Theorem

For any class C und closed under NC reductions, it is shown that all sets complete for C under first-order (equivalently, Dlogtimeuniform AC) reductions are isomorphic under first-order computable

متن کامل

The Norm Residue Isomorphism Theorem

We provide a patch to complete the proof of the Voevodsky-Rost Theorem, that the norm residue map is an isomorphism. (This settles the motivic Bloch-Kato conjecture).

متن کامل

An Approximation Theorem of Runge Type for the Heat Equation

If ft is an open subset of Rn+ , the approximation problem is to decide whether every solution of the heat equation on II can be approximated by solutions defined on all of R . The necessary and sufficient condition on il which insures this type of approximation is that every section of Q taken by hyperplanes orthogonal to the Z-axis be an open set without "holes," i.e., whose complement has no...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Potential Analysis

سال: 2010

ISSN: 0926-2601,1572-929X

DOI: 10.1007/s11118-010-9193-x